Open Channel Flow

$>$ Liquid (water) flow with a free surface (interface between water and air)
$>$ relevant for
$>$ natural channels: rivers, streams
$>$ engineered channels: canals, sewer lines or culverts (partially full), storm drains
$>$ of interest to hydraulic engineers
$>$ location of free surface
$>$ velocity distribution
$>$ discharge - stage (depth_) relationships
$>$ optimal channel design

Topics in Open Channel Flow

> Uniform Flow normal depth
$>$ Discharge-Depth relationships
$>$ Channel transitions
$>$ Control structures (sluice gates, weirs...)
$>$ Rapid changes in bottom elevation or cross section
$>$ Critical, Subcritical and Supercritical Flow
$>$ Hydraulic Jump
$>$ Gradually Varied Flow
$>$ Classification of flows
$>$ Surface profiles

Classification of Flows

$>$ Steady and Unsteady (Temporal)

$>$ Steady: velocity at a given point does not change with time
$>$ Uniform, Gradually Varied, and Rapidly Varied (Spatial)
$>$ Uniform: velocity at a given time does not change within a given length of a channel
> Gradually varied: gradual changes in velocity with distance
$>$ Laminar and Turbulent
$>$ Laminar: flow appears to be as a movement of thin layers on top of each other
$>$ Turbulent: packets of liquid move in irregular paths

Momentum and Energy Equations

$>$ Conservation of Energy
\rightarrow "losses" due to conversion of turbulence to heat
$>$ useful when energy losses are known or small $>$ Contractions
$>$ Must account for losses if applied over long distances $>$ We need an equation for losses
$>$ Conservation of Momentum
"losses" due to shear at the boundaries
$>$ useful when energy losses are unknown
> Expansion

Open Channel Flow:

Discharge/Depth Relationship

$>$ Given a long channel of constant slope and cross section find the relationship between discharge and depth
> Assume

$>$ Steady Uniform Flow - no acceleration
$>$ prismatic channel (no change in geometry with distance)
$>$ Use Energy, Momentum, Empirical or Dimensional Analysis?
$>$ What controls depth given a discharge? $\quad \tau_{0}=-\frac{\gamma_{l} d}{4 l}$
$>$ Why doesn't the flow accelerate? Force balance

Steady-Uniform Flow: Force Balance

Shear force $=\tau_{0} \mathrm{P} \Delta \mathrm{x}$
Wetted perimeter $=\underline{\mathrm{P}}$
Gravitational force $=\gamma \mathrm{A} \Delta \mathrm{x} \sin \theta$
$\gamma A \Delta x \sin \theta-\tau_{o} P \Delta x=0$

$$
\tau_{o}=\gamma \frac{A}{P} \sin \theta
$$

$$
\frac{A}{\boldsymbol{n}}=\mathrm{R}_{\mathrm{h}} \quad \text { Hydraulic radius }
$$

$$
P
$$

$$
t_{o}=g R_{h} S
$$

Relationship between shear and velocity? Turbulence

Open Conduits:

Dimensional Analysis

$>$ Geometric parameters
$>$ Hydraulic radius $\left(R_{h}\right)$

$$
R_{h}=\frac{A}{P}
$$

$>$ Channel length (l)
$>$ Roughness (ε)
$>$ Write the functional relationship
$>$ Does Fr affect shear? No!

$$
F r=\frac{V}{\sqrt{y g}}
$$

Pressure Coefficient for Open Channel Flow?

$$
\begin{array}{ll}
\mathrm{C}_{p}=\frac{-2 \Delta p}{\rho V^{2}} & \underline{\text { Pressure Coefficient }} \\
\underline{\text { Energy Loss Coefficient) }} \\
\mathrm{C}_{h_{l}}=\frac{2 g h_{l}}{V^{2}} & \underline{\text { Head loss coefficient }} \\
\mathrm{C}_{S_{f}}=\frac{2 g S_{f} l}{V^{2}} & \underline{\text { Friction slope coefficient }}
\end{array}
$$

$$
-\Delta p=\nu_{l}
$$

$$
h_{l}=S_{f} l
$$

Friction slope
Slope of EGL

Dimensional Analysis

$$
\begin{aligned}
& \text { Head loss } \propto \text { length of channel }
\end{aligned}
$$

$$
\begin{aligned}
& h_{l}=\mathrm{f} \frac{L}{D} \frac{V^{2}}{2 g} \\
& \frac{2 g S_{f} l}{V^{2}} \frac{R_{h}}{l}=I \quad S_{f}=\frac{l}{R_{h}} \frac{V^{2}}{2 g} \quad V=\sqrt{\frac{2 g S_{f} R_{h}}{l}} \quad V=\sqrt{\frac{2 g}{l}} \sqrt{S_{f} R_{h}}
\end{aligned}
$$

Chezy Equation (1768)

$>$ Introduced by the French engineer Antoine Chezy in 1768 while designing a canal for the water-supply system of Paris

$$
V=C \sqrt{R_{h} S_{f}} \quad \text { compare } \quad V=\sqrt{\frac{2 g}{I}} \sqrt{S_{f} R_{h}}
$$

where $\mathrm{C}=$ Chezy coefficient

$$
60 \frac{\sqrt{m}}{s}<\mathrm{C}<150 \frac{\sqrt{m}}{s} \quad 0.0054>/>0.00087 \quad \begin{array}{cc}
\text { For a pipe } \\
0.022>\mathrm{f}>0.0035 & d=4 R_{h}
\end{array}
$$

where 60 is for rough and 150 is for smooth
also a function of \mathbf{R} (like f in Darcy-Weisbach)

Darcy-Weisbach Equation (1840)

$\mathrm{f}=$ Darcy-Weisbach friction factor
$h_{l}=\mathrm{f} \frac{l}{d} \frac{V^{2}}{2 g} \longrightarrow h_{l}=\mathrm{f} \frac{l}{4 R_{h}} \frac{V^{2}}{2 g}$

$$
R_{h}=\frac{A}{\mathrm{P}}=\frac{\left(\frac{\pi d^{2}}{4}\right)}{\pi d}=\frac{d}{4}
$$

$S_{f} l=\mathrm{f} \frac{l}{4 R_{h}} \frac{V^{2}}{2 g} \quad \longrightarrow \quad S_{f} R_{h}=\mathrm{f} \frac{V^{2}}{8 g} \longrightarrow V=\sqrt{\frac{8 g}{\mathrm{f}}} \sqrt{S_{f} R_{h}}$
$\frac{1}{\sqrt{\mathrm{f}}}=-2 \log \left(\frac{\varepsilon}{12 R_{h}}+\frac{2.5}{\operatorname{Re} \sqrt{\mathrm{f}}}\right)$
Similar to Colebrook

For rock-bedded streams where $\mathrm{d}_{84}=$ rock size larger than 84% of the rocks in a random sample

$$
\mathrm{f}=\frac{1}{\left(1.2+2.03 \log \left[\frac{R_{h}}{d_{84}}\right]\right)^{2}}
$$

Manning Equation (1891)

> Most popular in U.S. for open channels

$$
V=\frac{1}{n} \mathrm{R}_{\mathrm{h}}^{2 / 3} \mathrm{~S}_{\mathrm{o}}^{1 / 2}
$$

(MKS units!)
Dimensions of $n ? \mathrm{~T} / \mathrm{L}^{1 / 3}$
$V=\frac{1.49}{n} \mathrm{R}_{\mathrm{h}}^{2 / 3} \mathrm{~S}^{1 / 2} \quad \begin{aligned} & \text { (English system) } \\ & Q=V A\end{aligned} \underline{\text { Bottom slope }}$
Q
$Q=\frac{1}{n} A R_{h}^{2 / 3} S_{o}^{1 / 2} \quad$ very sensitive to n

Values of Manning n

Lined Canals	n	$\mathrm{n}=\mathrm{f}$ (surface
Cement plaster	0.011	
Untreated gunite	0.016	
Wood, planed	0.012	
Wood, unplaned	0.013	roughness,
Concrete, trowled	0.012	
Concrete, wood forms, unfinished	0.015	channel
Rubble in cement	0.020	
Asphalt, smooth	0.013	irregularity,
Asphalt, rough	0.016	stage...)
Natural Channels		
Gravel beds, straight	0.025	
Gravel beds plus large boulders	0.040	
Earth, straight, with some grass	0.026	
Earth, winding, no vegetation	0.030	
Earth, winding with vegetation	0.050	

$$
\begin{aligned}
& n=0.031 d^{1 / 6} \mathrm{~d} \text { in } \mathrm{ft} \\
& n=0.038 d^{1 / 6} \mathrm{~d} \text { in } \mathrm{m}
\end{aligned}
$$

Trapezoidal Channel
 $Q=\frac{1}{n} A R_{h}^{2 / 3} S_{o}^{1 / 2}$

$>$ Derive $\mathrm{P}=\mathrm{f}(\mathrm{y})$ and $\mathrm{A}=\mathrm{f}(\mathrm{y})$ for a trapezoidal channel
$>$ How would you obtain $y=f(Q)$?

$$
A=y b+y^{2} z
$$

$P=2$ éé $^{2}+(y z)^{2} \stackrel{\text { ü }}{ }_{\text {un }}{ }^{2 / 2}+b$

$$
P=2 y \dot{\hat{C}}+z^{2} \dot{\theta}^{1 / 2}+b
$$

Use Solver!

Flow in Round Conduits

$$
\theta=\arccos \left(\frac{r-y}{r}\right)
$$

radians
$A=r^{2}(\theta-\sin \theta \cos \theta)$
$T=2 r \sin \theta$
$P=2 r \theta$
Maximum discharge when $\mathrm{y}=\underline{0.938 \mathrm{~d}}$

Velocity Distribution

$v(y)=V+\frac{1}{\kappa} \sqrt{g d S_{0}}\left(1+\ln \frac{y}{d}\right)$
For channels wider than 10d
k » 0.4 Von Kármán constant
$\mathrm{V}=$ average velocity
d = channel depth
At what elevation does the
velocity equal the average
 velocity?
$-1=\ln \frac{y}{d} \quad y=\frac{1}{e} d \quad 0.368 \mathrm{~d}$

Open Channel Flow: Energy Relations

Bottom slope $\left(\mathrm{S}_{\mathrm{o}}\right)$ not necessarily equal to EGL slope $\left(\mathrm{S}_{f}\right)$

Energy Relationships

Pipe flow
z - measured from horizontal datum

Energy Equation for Open Channel Flow

$$
y_{1}+\frac{V_{1}^{2}}{2 g}+S_{o} \mathrm{D} x=y_{2}+\frac{V_{2}^{2}}{2 g}+S_{f} \mathrm{D} x
$$

Specific Energy

> The sum of the depth of flow and the velocity head is the specific energy: + pressure

$$
\begin{array}{cc}
E=y+\frac{V^{2}}{2 g} & \frac{\text { y - potential energy }}{} \\
E_{1}+S_{o} \Delta x=E_{2}+S_{\mathrm{f}} \Delta x &
\end{array}
$$

If channel bottom is horizontal and no head loss

$$
E_{1}=E_{2}
$$

For a change in bottom elevation

$$
E_{1}-D_{y}=E_{2}
$$

Specific Energy

In a channel with constant discharge, Q

$$
\begin{gathered}
Q=A_{1} V_{1}=A_{2} V_{2} \\
E=y+\frac{V^{2}}{2 g} \longrightarrow E=y+\frac{Q^{2}}{2 g A^{2}} \text { where } \mathrm{A}=\mathrm{f}(\mathrm{y})
\end{gathered}
$$

Consider rectangular channel $(\mathrm{A}=\mathrm{By})$ and $\mathrm{Q}=\mathrm{qB}$

$$
E=y+\frac{q^{2}}{2 g y^{2}}
$$

3 roots (one is negative)
q is the discharge per unit width of channel

B
How many possible depths given a specific energy? 2

Specific Energy: Sluice Gate

Given downstream depth and discharge, find upstream depth.
y_{1} and y_{2} are alternate depths (same specific energy)
Why not use momentum conservation to find y_{1} ?

Specific Energy: Raise the Sluice Gate

as sluice gate is raised y_{1} approaches y_{2} and E is minimized: Maximum discharge for given energy.

Step Up with Subcritical Flow

Short, smooth step with rise Δy in channel
Given upstream depth and discharge find y_{2}

Is alternate depth possible? NO! Calculate depth along step.

Max Step Up

Short, smooth step with maximum rise Δy in channel What happens if the step is increased further? y_{1} increases

Step Up with Supercritical flow

Short, smooth step with rise Δy in channel
Given upstream depth and discharge find y_{2}

What happened to the water depth? Increased! Expansion! Energy Loss

Critical Flow

Find critical depth, y_{c}
Arbitrary cross-section

$$
\begin{gathered}
\frac{d E}{d y}=0 \quad \mathrm{~A}=\mathrm{f}(\mathrm{y}) \quad \mathrm{T} \\
E=y+\frac{Q^{2}}{2 g A^{2}} \\
\frac{d E}{d y}=1-\frac{Q^{2}}{g A^{3}} \frac{d A}{d y}=0 \quad d A=\underline{T d y} \quad \mathrm{~T}=\text { surface width } \\
1=\frac{Q^{2} T_{c}}{g A_{c}^{3}} \quad \frac{Q^{2} T}{g A^{3}}=F r^{2} \quad \frac{V^{2} T}{g A}=F r^{2} \quad \frac{A}{T}=D \quad \text { Hydraulic Depth }
\end{gathered}
$$

Critical Flow:

Rectangular channel

$$
\begin{gathered}
1=\frac{Q^{2} T_{c}}{g A_{c}^{3}} \quad T=T_{c} \\
Q=q T \quad A_{c}=y_{c} T \\
1=\frac{q^{2} T^{3}}{g y_{c}^{3} T^{3}}=\frac{q^{2}}{g y_{c}^{3}} \\
y_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3} \quad \text { Only for rectangular channels! } \\
q=\sqrt{g y_{c}^{3}} \quad \text { Given the depth we can find the flow! }
\end{gathered}
$$

Critical Flow Relationships: Rectangular Channels

$$
\begin{aligned}
& y_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3} \\
& y_{c}^{3}=\left(\frac{V_{c}^{2} y_{c}^{2}}{g}\right) \\
& \text { because } \quad q=V_{c} y_{c} \\
& \frac{V_{c}}{\sqrt{y_{c} g}}=1 \quad \text { Froude number } \quad \frac{\text { inertial force }}{\text { gravity force }} \sqrt{\frac{\text { Kinetic energy }}{\text { Potential energy }}} \\
& y_{c}=\frac{V_{c}^{2}}{g} \quad \longrightarrow \quad \frac{y_{c}}{2}=\frac{V_{c}^{2}}{2 g} \quad \text { velocity head }=\underline{0.5(\text { depth })} \\
& E=y+\frac{V^{2}}{2 g} \longrightarrow E=y_{c}+\frac{y_{c}}{2} \longrightarrow y_{c}=\frac{2}{3} E
\end{aligned}
$$

Critical Depth

$>$ Minimum energy for a given q
$>$ Occurs when $\frac{d E}{d y}=\underline{0}$
$>$ When
$>\mathrm{Fr}=1$

$$
F r=\frac{V_{c}}{\sqrt{y_{c} g}}=\frac{q}{\sqrt{g y_{c}^{3}}}=Q \sqrt{\frac{T}{g A^{3}}}
$$

$>\operatorname{Fr}>1=$ Super critical
$>\operatorname{Fr}<1=$ Sub_critical

Critical Flow

$$
\frac{d E}{d y}=0
$$

$>$ Unstable surface
$>$ Series of standing waves
$\underline{\text { Difficult to measure depth }}$
$>$ Occurrence
$>$ Broad crested weir (and other weirs)
$>$ Channel Controls (rapid changes in cross-section)
$>$ Over falls
$>$ Changes in channel slope from mild to steep
$>$ Used for flow measurements
$>$ Unique relationship between depth and discharge

Broad-Crested Weir

$$
\begin{aligned}
& y_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3} \\
& q=\sqrt{g y_{c}^{3}} \\
& Q=b \sqrt{g y_{c}^{3}} \\
& y_{c}=\frac{2}{3} E \\
& Q=b \sqrt{g}\left(\frac{2}{3}\right)^{3 / 2} E^{3 / 2} \\
& Q=C_{d} b \sqrt{g}\left(\frac{2}{3} H\right)^{3 / 2} \\
& \text { Hard to measure } y_{c} \\
& \text { E measured from top of weir } \\
& \mathrm{C}_{\mathrm{d}} \text { corrects for using H rather } \\
& \text { than } \mathrm{E} \text {. }
\end{aligned}
$$

Broad-crested Weir: Example

$>$ Calculate the flow and the depth upstream. The channel is 3 m wide. Is H approximately equal to E ?

How do you find flow? Critical flow relation

How do you find H? Energy equation

Could a hydraulic jump be laminar?

Hydraulic Jump

$>$ Used for energy dissipation
$>$ Occurs when flow transitions from supercritical to subcritical
$>$ base of spillway
$>$ Steep slope to mild slope
$>$ We would like to know depth of water downstream from jump as well as the location of the jump
$>$ Which equation, Energy or Momentum?

Hydraulic Jump

$\mathbf{M}_{1}+\mathbf{M}_{2}=\boldsymbol{W}+\mathbf{F}_{p_{1}}+\mathbf{F}_{p_{2}}+\mathbf{F}_{s s}$ Conservation of Momentum EGL

$$
\begin{aligned}
& M_{1 x}+M_{2 x}=F_{1} \\
& M_{1 x}=-\rho V_{1}^{2} A_{1} \\
& M_{2 x}=\rho V_{2}^{2} A_{2}
\end{aligned}
$$

$$
\begin{aligned}
& -\rho Q V_{1}+\rho Q V_{2}=\bar{p}_{1} A_{1}-\bar{p}_{2} A_{2} \\
& -\frac{Q^{2}}{A_{1}}+\frac{Q^{2}}{A_{2}}=\frac{g y_{1} A_{1}}{2}-\frac{g y_{2} A_{2}}{2} \\
& \hline p=\frac{r g y}{2}
\end{aligned}
$$

Hydraulic Jump: Conjugate Depths

For a rectangular channel make the following substitutions

$$
\begin{array}{cl}
A=B y & Q=B y_{1} V_{1} \\
F r_{1}=\frac{V_{1}}{\sqrt{g y_{1}}} & \text { Froude number }
\end{array}
$$

Much algebra $\longrightarrow y_{2}=\frac{y_{1}}{2}\left(-1+\sqrt{1+8 F r_{1}^{2}}\right)$

$$
\frac{y_{2}}{y_{1}}=\frac{-1+\sqrt{1+8 F r_{1}^{2}}}{2}
$$

valid for slopes < 0.02

Hydraulic Jump:

Energy Loss and Length

π Energy Loss $\quad E_{1}=E_{2}+h_{L}$

$$
E=y+\frac{q^{2}}{2 g y^{2}} \xrightarrow{\text { algebra }} h_{L}=\frac{\left(y_{2}-y_{1}\right)^{3}}{4 y_{1} y_{2}}
$$

significant energy loss (to turbulence) in jump
7 Length of jump
No general theoretical solution
Experiments show

$$
L=6 y_{2} \text { for } 4.5<F r_{1}<13
$$

Specific Momentum

$$
\begin{aligned}
& \frac{g y_{1} A_{1}}{2}+\frac{Q^{2}}{A_{1}}=\frac{g y_{2} A_{2}}{2}+\frac{Q^{2}}{A_{2}} \\
& \frac{y_{1} A_{1}}{2}+\frac{Q^{2}}{A_{1} g}=\frac{y_{2} A_{2}}{2}+\frac{Q^{2}}{A_{2} g} \\
& \frac{y_{1}^{2}}{2}+\frac{q^{2}}{y_{1} g}=\frac{y_{2}^{2}}{2}+\frac{q^{2}}{y_{2} g}
\end{aligned}
$$

When is M minimum?

$\frac{d M}{d y}=y+\frac{-q^{2}}{y^{2} g} \quad y=\left(\frac{q^{2}}{g}\right)^{1 / 3}$ Critical depth! \quad| 2 | 3 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: |
| | | E or M | | |

Hydraulic Jump Location

$>$ Suppose a sluice gate is located in a long channel with a mild slope. Where will the hydraulic jump be located?
$>$ Outline your solution scheme

Gradually Varied Flow: Find Change in Depth wit x

$$
y_{1}+\frac{V_{1}^{2}}{2 g}+S_{o} \Delta x=y_{2}+\frac{V_{2}^{2}}{2 g}+S_{f} \Delta x
$$

$S_{o} d x=\left(y_{2}-y_{1}\right)+\left(\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}\right)+S_{f} d x \quad$ Shrink control volume $d y=y_{2}-y_{1}$

$$
\begin{aligned}
& d y+d\left(\frac{V^{2}}{2 g}\right)+S_{f} d x=S_{o} d x \\
& \frac{d y}{d y}+\frac{d}{d y}\left(\frac{V^{2}}{2 g}+S_{f} \frac{d x}{d y}=S_{o} \frac{d x}{d y}\right.
\end{aligned}
$$

Energy equation for nonuniform, steady flow

Gradually Varied Flow:
 Derivative of KE wrt Depth

$$
\begin{aligned}
& \frac{d}{d y}\left(\frac{V^{2}}{2 g}\right)=\frac{d}{d y}\left(\frac{Q^{2}}{2 g A^{2}}\right)=\left(\frac{-2 Q^{2}}{2 g A^{3}}\right) \cdot \frac{d A}{d y}=\left(\frac{-Q^{2} T}{g A^{3}}\right)=-F r^{2} \\
& \frac{d y}{d y}+\frac{d}{d y}\left(\frac{V^{2}}{2 g}\right)+S_{f} \frac{d x}{d y}=S_{o} \frac{d x}{d y} \quad \xrightarrow[\text { Change in KE }]{\text { Change in PE }} \quad d A=T d y
\end{aligned}
$$

$$
1-F r^{2}+S_{f} \frac{d x}{d y}=S_{o} \frac{d x}{d y}
$$

We are holding Q constant!
Does $\mathrm{V}=\mathrm{Q} / \mathrm{A}$? Is $\mathrm{V} \perp \mathrm{A}$?
$\underline{d y}=\underline{S_{o}-S_{f}}$ The water surface slope is a function of: $d x \quad 1-F r^{2} \quad$ bottom slope, friction slope, Froude number

Gradually Varied Flow: Governing equation

$\frac{d y}{d x}=\frac{S_{o}-S_{f}}{1-F r^{2}}$
Governing equation for gradually varied flow
$>$ Gives change of water depth with distance along channel
> Note
$>\mathrm{S}_{\mathrm{o}}$ and S_{f} are positive when sloping down in direction of flow
$\Rightarrow y$ is measured from channel bottom
$>\mathrm{dy} / \mathrm{dx}=0$ means water depth is constant $\mathbf{y}_{\mathbf{n}}$ is when $S_{o}=S_{f}$

Surface Profiles

\Rightarrow Mild slope $\left(\mathrm{y}_{\mathrm{n}}>\mathrm{y}_{\mathrm{c}}\right)$
$>$ in a long channel subcritical flow will occur
$>$ Steep slope $\left(\mathrm{y}_{\mathrm{n}}<\mathrm{y}_{\mathrm{c}}\right)$
$>$ in a long channel supercritical flow will occur
\Rightarrow Critical slope ($\mathrm{y}_{\mathrm{n}}=\mathrm{y}_{\mathrm{c}}$)
$>$ in a long channel unstable flow will occur
$>$ Horizontal slope $\left(\mathrm{S}_{\mathrm{o}}=0\right)$
$>\mathrm{y}_{\mathrm{n}}$ undefined
$>$ Adverse slope $\left(\mathrm{S}_{\mathrm{o}}<0\right)$
$>y_{n}$ undefined
Note: These slopes are $f(\mathbf{Q})$!

Surface Profiles

Normal depth \rightarrow
 M_{1}
 Sluice gate $\rightarrow>\rightarrow$ Mild
 Obstruction Steep slope $\left(\mathrm{S}_{2}\right)$
 Hydraulic Jump

$\frac{d y}{d x}=\frac{S_{o}-S_{f}}{1-F r^{2}}$
$\mathrm{S}_{0}-\mathrm{S}_{f} \quad 1-\mathrm{Fr}^{2} \quad \mathrm{dy} / \mathrm{dx}$

More Surface Profiles

Direct Step Method

$$
y_{1}+\frac{V_{1}^{2}}{2 g}+S_{o} \Delta x=y_{2}+\frac{V_{2}^{2}}{2 g}+S_{f} \Delta x \quad \text { energy equation }
$$

$$
\Delta x=\frac{y_{1}-y_{2}+\frac{V_{1}^{2}}{2 g}-\frac{V_{2}^{2}}{2 g}}{S_{f}-S_{o}} \quad \text { solve for } \Delta \mathrm{x}
$$

rectangular channel

$$
V_{1}=\frac{q}{y_{1}} \quad V_{2}=\frac{q}{y_{2}} \quad V_{2}=\frac{Q}{A_{2}} \quad V_{1}=\frac{Q}{A_{1}}
$$

prismatic channel

Direct Step Method Friction Slope

Manning
$S_{f}=\frac{n^{2} V^{2}}{R_{h}^{4 / 3}} \quad$ SI units $\quad S_{f}=\mathrm{f} \frac{V^{2}}{8 g R_{h}}$
$S_{f}=\frac{n^{2} V^{2}}{2.22 R_{h}^{4 / 3}} \quad$ English units
Darcy-Weisbach

$$
S_{f}=\mathrm{f} \frac{V^{2}}{8 g R_{h}}
$$

Direct Step

$>$ Limitation: channel must be prismatic (channel geometry is independent of x so that velocity is a function of depth only and not a function of x)
$>$ Method
$>$ identify type of profile (determines whether $\Delta \mathrm{y}$ is + or -)
$>$ choose $\Delta \mathrm{y}$ and thus $\mathrm{y}_{\mathrm{i}+1}$
$>$ calculate hydraulic radius and velocity at y_{i} and $\mathrm{y}_{\mathrm{i}+1}$
$>$ calculate friction slope given y_{i} and $\mathrm{y}_{\mathrm{i}+1}$
$>$ calculate average friction slope
$>$ calculate Δx

Direct Step Method

	$=y$	$\begin{array}{r} * b+y^{\wedge}{ }^{\wedge} \\ =2^{*} \end{array}$	$2 * z$ $y^{*}(1+$	$\left.z^{\wedge} 2\right)^{\prime}$ $=Q$	$\wedge 0.5+b$ /A $=(\mathrm{n} *)$)^2/ $=y+$	$\begin{array}{r} \Delta x \\ h^{\wedge}(4 / 3 \\ \left.V^{\wedge} 2\right) /(\\ =(G 1 e \end{array}$	$=$) $\begin{aligned} & (2 * g \\ & 6-G \end{aligned}$	5)/($y_{2}+$ S_{f} F15+	$2 g$ S_{o} 16)/2	$2 g$ -So)
A	B	C	D	E	F	G	H	I	J	K	L	M
y	A	P	Rh	V	Sf	E	Dx	X	T	Fr	bottom	surface
0.900	1.799	4.223	0.426	0.139	0.00004	0.901		0	3.799	0.065	0.000	0.900
0.870	1.687	4.089	0.412	0.148	0.00005	0.871	0.498	0.5	3.679	0.070	0.030	0.900

Standard Step

$>$ Given a depth at one location, determine the depth at a second given location
$>$ Step size $(\Delta \mathrm{x})$ must be small enough so that changes in water depth aren't very large. Otherwise estimates of the friction slope and the velocity head are inaccurate
$>$ Can solve in upstream or downstream direction
$>$ Usually solved upstream for subcritical
$>$ Usually solved downstream for supercritical
$>$ Find a depth that satisfies the energy equation

$$
y_{1}+\frac{V_{1}^{2}}{2 g}+S_{o} \Delta x=y_{2}+\frac{V_{2}^{2}}{2 g}+S_{f} \Delta x
$$

What curves are available? Steep Slope

Is there a curve between y_{c} and y_{n} that increases in depth in the downstream direction? NO!

Mild Slope

$>$ If the slope is mild, the depth is less than the critical depth, and a hydraulic jump occurs, what happens next?
Rapidly varied flow!
When dy/dx is large then V isn't normal to cs

Hydraulic jump! Check conjugate depths

Water Surface Profiles: Putting It All Together

1 km downstream from gate there is a broad crested weir with $\mathrm{P}=1 \mathrm{~m}$. Draw the water surface profile.

Wave Celerity

steady flow

$$
\begin{aligned}
& \text { unsteady flow } \\
& \mathbf{M}_{1}+\mathbf{M}_{2}=\mathbf{W}+\mathbf{F}_{p_{1}}+\mathbf{F}_{p_{2}}+\mathbf{F}_{s s} \\
& F_{p_{1}}=\frac{1}{2} r g y^{2} \quad F_{p_{2}}=-\frac{1}{2} r g(y+d y)^{2} \\
& F_{p_{1}}+F_{p_{2}}=\frac{1}{2} r g \text { éty } y^{2}-(y+d y)^{2} \text { ù ù }
\end{aligned}
$$

Wave Celerity:

Momentum Conservation

$$
\begin{aligned}
& M_{1}=-\rho\left(V-V_{w}\right)^{2} y \quad M_{2}=r\left(V+d V-V_{w}\right)\left(V-V_{w}\right) y \quad \underline{\text { Per unit width }} \\
& \mathbf{M}_{1}+\mathbf{M}_{2}=r y\left(V-V_{w}\right)\left[\left(\forall+d V-\not V_{w}\right)-(V-V /)\right] \\
& \mathbf{M}_{1}+\mathbf{M}_{2}=r y\left(V-V_{w}\right) d V \quad F_{p_{1}}+F_{p_{2}}=\frac{1}{2} r g \text { éé } y^{2}-(y+d y)^{2} \text { ù u }
\end{aligned}
$$

Now equate pressure and momentum
$\frac{1}{2} / g \dot{e} y^{2}-y^{2}-2 \not f d y-d \not f^{2} \dot{甘}=d f\left(V-V_{w}\right) d V$
$-g \delta y=\left(V-V_{w}\right) \delta V$

steady flow

Wave Celerity

$$
\begin{aligned}
& y\left(V-V_{w}\right)=(y+\delta y)\left(V+\delta V-V_{w}\right) \\
& \text { Mass conservation } \\
& y W-y W_{w}=y W+\delta y V+y \delta V+\delta y \delta V-y W_{w}-\delta y V_{w} \\
& \delta V=-\left(V-V_{w}\right) \frac{\delta y}{y} \\
& -g \delta y=\left(V-V_{w}\right) \delta V \text { Momentum } \\
& g \not d=\left(V-V_{w}\right)^{2} \underline{\phi y} \\
& y \\
& g y=\left(V-V_{w}\right)^{2} \\
& c=V-V_{w} \\
& c=\sqrt{g y} \\
& \frac{V}{\sqrt{y g}}=F r=\frac{V}{c}
\end{aligned}
$$

Wave Propagation

$>$ Supercritical flow
$>c<V$
$>$ waves only propagate downstream
$>$ water doesn't "know" what is happening downstream
\rightarrow upstream control
\rightarrow Critical flow
$>\mathrm{c}=\mathrm{V}$
$>$ Subcritical flow
$>c>V$
$>$ waves propagate both upstream and downstream

Discharge Measurements

\Rightarrow Sharp-Crested Weir $\quad Q=\frac{2}{3} C_{b} b \sqrt{2 g} H^{3 / 2}$
$>$ V-Notch Weir
$Q=\frac{8}{15} C_{d} \sqrt{2 g} \tan \left(\frac{\theta}{2}\right) H^{5 / 2}$
$>$ Broad-Crested Weir

$$
Q=C_{d} b \sqrt{g}\left(\frac{2}{3} H\right)^{3 / 2}
$$

$>$ Sluice Gate

$$
Q=C_{d} b y_{g} \sqrt{2 g y_{1}}
$$

Explain the exponents of $\mathrm{H}!\quad V=\sqrt{2 g H}$

Summary (1)

\Rightarrow All the complications of pipe flow plus additional parameter... free surface location __
$>$ Various descriptions of energy loss
$>$ Chezy, Manning, Darcy-Weisbach
$>$ Importance of Froude Number
$>\mathrm{Fr}>1$ decrease in E gives increase in y
$>\mathrm{Fr}<1$ decrease in E gives decrease in y

$>\mathrm{Fr}=1$ standing waves (also min E given Q)

Summary (2)

$>$ Methods of calculating location of free surface (Gradually varying)
$>$ Direct step (prismatic channel)
$>$ Standard step (iterative)
$>$ Differential equation

$$
\frac{d y}{d x}=\frac{S_{o}-S_{f}}{1-F r^{2}}
$$

$>$ Rapidly varying
>Hydraulic jump

Broad-crested Weir: Solution

$$
\begin{gathered}
q=\sqrt{g y_{c}^{3}} \\
q=\sqrt{\left(9.8 m / s^{2}\right)(0.3 m)^{3}} \\
q=0.5144 m^{2} / \mathrm{s} \\
Q=q L=1.54 m^{3} / \mathrm{s}
\end{gathered}
$$

Summary/Overview

>Energy losses
$>$ Dimensional Analysis
$>$ Empirical

$$
\begin{aligned}
V & =\sqrt{\frac{8 g}{f}} \sqrt{S_{f} R_{h}} \\
V & =\frac{1}{n} \mathrm{R}_{\mathrm{h}}^{2 / 3} \mathrm{~S}_{\mathrm{o}}^{1 / 2}
\end{aligned}
$$

Energy Equation $y_{1}+\frac{V_{1}^{2}}{2 g}+S_{0} \mathrm{Dx}=y_{2}+\frac{V_{2}^{2}}{2 g}+S_{f} \mathrm{Dx}$
\Rightarrow Specific Energy $\quad E=y+\frac{V^{2}}{2 g}=y+\frac{q^{2}}{2 g y^{2}}=y+\frac{Q^{2}}{2 g A^{2}}$
$>$ Two depths with same energy!
$>$ How do we know which depth is the right one?
\Rightarrow Is the path to the new depth possible?

What next?

$>$ Water surface profiles
>Rapidly varied flow
\rightarrow A way to move from supercritical to subcritical flow (Hydraulic Jump)
$>$ Gradually varied flow equations
$>$ Surface profiles
$>$ Direct step
$>$ Standard step

Open Channel Reflections

$>$ Why isn't Froude number important for describing the relationship between channel slope, discharge, and depth for uniform flow?
$>$ Under what conditions are the energy and hydraulic grade lines parallel in open channel flow?
$>$ Give two examples of how the specific energy could increase in the direction of flow.

