Open Channel Flow

- Liquid (water) flow with a <u>free surface</u> (interface between water and air)
- \succ relevant for
 - > natural channels: rivers, streams
 - engineered channels: canals, sewer lines or culverts (partially full), storm drains

- > of interest to hydraulic engineers
 - Iocation of free surface
 - velocity distribution
 - > discharge stage (<u>depth</u>) relationships
 - > optimal channel design

Topics in Open Channel Flow

- Uniform Flow _____ normal depth____
 - Discharge-Depth relationships
- Channel transitions
 - Control structures (sluice gates, weirs...)
 - Rapid changes in bottom elevation or cross section
- Critical, Subcritical and Supercritical Flow
- > Hydraulic Jump
- Gradually Varied Flow
 - Classification of flows
 - Surface profiles

Classification of Flows

- Steady and Unsteady (Temporal)
 - Steady: velocity at a given point does not change with time
- Uniform, Gradually Varied, and Rapidly Varied (Spatial)
 - Uniform: velocity at a given time does not change within a given length of a channel
 - Gradually varied: gradual changes in velocity with distance
- Laminar and Turbulent
 - Laminar: flow appears to be as a movement of thin layers on top of each other
 - > Turbulent: packets of liquid move in irregular paths

Momentum and Energy Equations

Conservation of Energy "losses" due to conversion of turbulence to heat \succ useful when energy losses are known or small <u>Contractions</u> > Must account for losses if applied over long distances > We need an equation for losses **Conservation of Momentum** \succ "losses" due to shear at the boundaries \succ useful when energy losses are unknown <u>Expansion</u>

Open Channel Flow: Discharge/Depth Relationship

- Given a long channel of constant slope and cross section find the relationship between discharge and depth
- > Assume

- Steady Uniform Flow no acceleration
- > prismatic channel (no change in <u>geometry</u> with distance)
- > Use Energy, Momentum, Empirical or Dimensional Analysis? $\tau_0 = -\frac{\gamma h_l d}{4l}$
- > What controls depth given a discharge?
- > Why doesn't the flow accelerate? Force balance

Steady-Uniform Flow: Force Balance

Relationship between shear and velocity? <u>Turbulence</u>

Open Conduits: Dimensional Analysis

 $R_h = -$

- Geometric parameters
 - \rightarrow Hydraulic radius (R_h)

 \succ Channel length (l)

<u>Roughness (ε)</u>

Write the functional relationship

$$C_{p} = f \underbrace{\bigotimes^{e} l}_{\mathbf{e} R_{h}}, \frac{e}{R_{h}}, \operatorname{Re}, \mathbf{F}_{r}, \mathbf{M}, \mathbf{W}_{\dot{\mathbf{e}}}^{\ddot{O}}$$

➢ Does Fr affect shear? _____No!

$$Fr = \frac{V}{\sqrt{yg}}$$

Pressure Coefficient for Open **Channel Flow?**

$$-\Delta p = \gamma h_l$$

 $h_l = S_f l$ Friction slope Slope of EGL

Dimensional Analysis

$$C_{S_f} = f \frac{\bigotimes l}{\bigotimes R_h}, \frac{e}{R_h}, \operatorname{Re}_{\dot{\overline{O}}}^{\ddot{O}}$$

$$C_{S_f} = \frac{2gS_f l}{V^2}$$

 $C_{S_f} = \frac{l}{R_h} f \overset{\mathcal{R}e}{\otimes}_{R_h}, \operatorname{Re}\overset{\ddot{O}}{\diamond}$ Head loss \propto length of channel

$$C_{S_{f}} \frac{R_{h}}{l} = f \bigotimes_{i=1}^{\infty} R_{h}^{i}, \operatorname{Re}_{i=1}^{i} = I \quad \text{(like f in Darcy-Weisbach)} \quad C_{S_{f}} \frac{R_{h}}{l} = I$$

$$h_{l} = f \frac{L}{D} \frac{V^{2}}{2g}$$

$$\frac{2gS_{f}l}{V^{2}} \frac{R_{h}}{l} = I \quad S_{f} = \frac{I}{R_{h}} \frac{V^{2}}{2g} \quad V = \sqrt{\frac{2gS_{f}R_{h}}{I}} \quad V = \sqrt{\frac{2g}{I}} \sqrt{S_{f}R_{h}}$$

Chezy Equation (1768)

Introduced by the French engineer Antoine Chezy in 1768 while designing a canal for the water-supply system of Paris

$$V = C\sqrt{R_h S_f} \quad \text{compare} \quad V = \sqrt{\frac{2g}{l}}\sqrt{S_f R_h}$$

where C = Chezy coefficient
$$60 \frac{\sqrt{m}}{s} < C < 150 \frac{\sqrt{m}}{s} \qquad 0.0054 > l > 0.00087 \quad \text{For a pipe}$$

$$0.022 > f > 0.0035 \qquad d = 4R_h$$

where 60 is for rough and 150 is for smooth also a function of **R** (like f in Darcy-Weisbach)

Darcy-Weisbach Equation (1840)

rocks in a random sample

Manning Equation (1891)

 \blacktriangleright Most popular in U.S. for open channels $V = -R_{\rm b}^{2/3}S_{\rm c}^{1/2}$ (MKS units!) Dimensions of *n*? T /L^{1/3} n Is *n* only a function of roughness? NO! $V = \frac{1.49}{...} R_{\rm h}^{2/3} S_{\rm o}^{1/2}$ (English system) п Bottom slope Q = VA $O = \frac{1}{-}AR_{h}^{2/3}S_{o}^{1/2}$ very sensitive to *n* n

Values of Manning n

Lined Canals	n
Cement plaster	0.011
Untreated gunite	0.016
Wood, planed	0.012
Wood, unplaned	0.013
Concrete, trowled	0.012
Concrete, wood forms, unfinished	0.015
Rubble in cement	0.020
Asphalt, smooth	0.013
Asphalt, rough	0.016
Natural Channels	
Gravel beds, straight	0.025
Gravel beds plus large boulders	0.040
Earth, straight, with some grass	0.026
Earth, winding, no vegetation	0.030
Earth, winding with vegetation	0.050

n = f(surface roughness, channel irregularity, stage...)

 $n = 0.031d^{1/6}$ d in ft $n = 0.038d^{1/6}$ d in m

d = median size of bed material

Trapezoidal Channel

$$Q = \frac{1}{n} A R_h^{2/3} S_o^{1/2}$$

Derive P = f(y) and A = f(y) for a trapezoidal channel

How would you obtain y = f(Q)?

Use Solver!

Flow in Round Conduits

Velocity Distribution

$$v(y) = V + \frac{1}{\kappa} \sqrt{g d S_0} \left(1 + \ln \frac{y}{d} \right)$$

For channels wider than 10d

- *k* » 0.4 Von Kármán constant
- V = average velocity d = channel depth
- At what elevation does the velocity equal the average velocity?

$$-1 = \ln \frac{y}{d}$$
 $y = \frac{1}{e}d$ 0.368d

Open Channel Flow: Energy Relations

Bottom slope (S_o) not necessarily equal to EGL slope (S_f)

Energy Relationships

Energy Equation for Open Channel Flow

$$y_1 + \frac{V_1^2}{2g} + S_o Dx = y_2 + \frac{V_2^2}{2g} + S_f Dx$$

Specific Energy

The sum of the depth of flow and the velocity head is the specific energy: + pressure $E = y + \frac{V^2}{2g} \qquad y - \text{potential energy}$ $E_1 + S_o \Delta x = E_2 + S_f \Delta x$

If channel bottom is horizontal and no head loss $E_1 = E_2$ For a change in bottom elevation $E_1 = E_2$

Specific Energy

In a channel with constant discharge, Q

$$Q = A_1V_1 = A_2V_2$$

$$E = y + \frac{V^2}{2g} \longrightarrow E = y + \frac{Q^2}{2gA^2} \text{ where A=f(y)}$$

Consider rectangular channel (A = By) and Q = qB

 $E = y + \frac{q^2}{2gy^2}$ q is the discharge per unit width of channel A

B

3 roots (one is negative)

How many possible depths given a specific energy? $\underline{2}$

Specific Energy: Sluice Gate

Specific Energy: Raise the Sluice Gate

as sluice gate is raised y_1 approaches y_2 and E is minimized: Maximum discharge for given energy.

Step Up with Subcritical Flow

Max Step Up

Short, smooth step with maximum rise Δy in channel What happens if the step is increased further? y_1 increases 3

E

Step Up with Supercritical flow

Critical Flow

Find critical depth, y_c

Arbitrary cross-section

Critical Flow: Rectangular channel

$1 = \frac{Q^2 T_c}{g A_c^3}$	$T = T_c$
Q = qT	$A_c = y_c T$

 $q = \sqrt{g y_c^3}$

Only for rectangular channels!

Given the depth we can find the flow!

Critical Flow Relationships: Rectangular Channels

Critical Depth

Minimum energy for a given q Occurs when $\frac{dE}{dy} = 0$ $\frac{V_c^2}{2g} = \frac{y_c}{2}$ When kinetic = potential! $\frac{2g}{2g} = \frac{y_c}{2}$ Fr=1

dE

dy

= 0

Characteristics

> Series of standing waves

Difficult to measure depth

Occurrence

- > Broad crested weir (and other weirs)
- Channel Controls (rapid changes in cross-section)
- ≻ Over falls
- Changes in channel slope from mild to steep
- Used for flow measurements
 - Unique relationship between depth and discharge

Broad-Crested Weir

$$\begin{array}{c|c} & & y_c \\ \hline H \\ \hline P \\ \hline Broad-crested \\ weir \\ \hline \end{array}$$
Hard to measure y_c

$$Q = b\sqrt{g} \left(\frac{2}{3}\right)^{3/2} E^{3/2}$$

 $Q = C_d b \sqrt{g} \left(\frac{2}{3}H\right)$

E measured from top of weir

C_d corrects for using H rather than E.

Broad-crested Weir: Example

Calculate the flow and the depth upstream. The channel is 3 m wide. Is H approximately

equal to E?

How do you find flow? Critical flow relation

How do you find H? Energy equation

Could a hydraulic jump be laminar?

Hydraulic Jump

- Occurs when flow transitions from supercritical to subcritical
 - ▹base of spillway
 - Steep slope to mild slope
- ➢ We would like to know depth of water downstream from jump as well as the location of the jump

≻ Which equation, Energy or <u>Momentum</u>?

Hydraulic Jump

Hydraulic Jump: Conjugate Depths

For a rectangular channel make the following substitutions

$$A = By \qquad Q = By_1V_1$$

 $Fr_1 = \frac{V_1}{\sqrt{gy_1}}$

Froude number

Much algebra
$$\longrightarrow y_2 = \frac{y_1}{2} \left(-1 + \sqrt{1 + 8Fr_1^2} \right)$$

$$\frac{y_2}{y_1} = \frac{-1 + \sqrt{1 + 8Fr_1^2}}{2}$$

valid for slopes < 0.02

Hydraulic Jump: Energy Loss and Length

$$\overrightarrow{E} = y + \frac{q^2}{2gy^2} \xrightarrow{algebra} h_L = \frac{(y_2 - y_1)^3}{4y_1y_2}$$

significant energy loss (to turbulence) in jump

∧Length of jump

No general theoretical solution

Experiments show

$$L = 6y_2$$
 for $4.5 < Fr_1 < 13$

Specific Momentum

$$\frac{gy_1A_1}{2} + \frac{Q^2}{A_1} = \frac{gy_2A_2}{2} + \frac{Q^2}{A_2}$$
$$\frac{y_1A_1}{2} + \frac{Q^2}{A_1g} = \frac{y_2A_2}{2} + \frac{Q^2}{A_2g}$$
$$\frac{y_1^2}{2} + \frac{q^2}{y_1g} = \frac{y_2^2}{2} + \frac{q^2}{y_2g}$$

When is M minimum?

Hydraulic Jump Location

Suppose a sluice gate is located in a long channel with a mild slope. Where will the hydraulic jump be located?

> Outline your solution scheme

Gradually Varied Flow: Find Change in Depth wrt x

$$y_{1} + \frac{V_{1}^{2}}{2g} + S_{o}\Delta x = y_{2} + \frac{V_{2}^{2}}{2g} + S_{f}\Delta x$$

Energy equation for non-
uniform, steady flow

$$S_{o}dx = (y_{2} - y_{1}) + \left(\frac{V_{2}^{2}}{2g} - \frac{V_{1}^{2}}{2g}\right) + S_{f}dx$$

Shrink control volume

$$dy = y_{2} - y_{1}$$

$$dy + d\left(\frac{V^{2}}{2g}\right) + S_{f}dx = S_{o}dx$$

$$\frac{dy}{dy} + \frac{d}{dy}\left(\frac{V^{2}}{2g}\right) + S_{f}\frac{dx}{dy} = S_{o}\frac{dx}{dy}$$

P

 $\frac{dy}{dx} = \frac{S_o - S_f}{1 - Fr^2}$ The water surface slope is a function of: bottom slope, friction slope, Froude number

Gradually Varied Flow: Governing equation

Governing equation for gradually varied flow

- Gives change of water depth with distance along channel
- > Note
 - > S_o and S_f are positive when sloping down in direction of flow

y is measured from channel bottom
 y dy/dx =0 means water depth is <u>constant</u>
 y_n is when $S_o = S_f$

Surface Profiles

- > Mild slope $(y_n > y_c)$
 - ➢ in a long channel subcritical flow will occur
- > Steep slope $(y_n < y_c)$
 - ➢ in a long channel supercritical flow will occur

Note: These slopes are f(Q)!

- \succ Critical slope (y_n=y_c)
 - ➢ in a long channel unstable flow will occur
- \rightarrow Horizontal slope (S_o=0)
 - > y_n undefined
- > Adverse slope (S_o<0)
 - > y_n undefined

Surface Profiles

More Surface Profiles

Direct Step Method

Direct Step Method Friction Slope

Manning		Darcy-Weisbach
$S_{f} = \frac{n^{2}V^{2}}{R_{h}^{4/3}}$	SI units	$S_f = f \frac{V^2}{8gR_h}$
$S_f = \frac{n^2 V^2}{2.22 R_h^{4/3}}$	English units	

Direct Step

- Limitation: channel must be <u>prismatic</u> (channel geometry is independent of x so that velocity is a function of depth only and not a function of x)
- ➢ Method
 - > identify type of profile (determines whether Δy is + or -)
 - \succ choose Δy and thus y_{i+1}
 - \succ calculate hydraulic radius and velocity at y_i and y_{i+1}
 - \succ calculate friction slope given y_i and y_{i+1}
 - > calculate average friction slope
 - \succ calculate Δx

Direct Step Method

	_=y*	$=y*b+y^2*z$					\mathbf{U}^2 \mathbf{U}^2					
		$=2*y*(1+z^2)^0.5+b$					$y_1 - y_2 + \frac{V_1^2}{2} - \frac{V_2^2}{2}$					
		= A/P $= Q/A$					$\Delta x = \frac{2g 2g}{S_f - S_o}$					
					$=(n^*V)$)^2/F	Rh^(4/3	8)				
	$ = y + (V^{2})/(2*g) $ $ = (G16-G15)/((F15+F16)/2-S)$								-So)			
А	В	С	D	E	F	G	H	Ι	J	K	L	Μ
y	Α	Ρ	Rh	V	Sf	E	Dx	X	Τ	Fr	bottom	surface
0.900	1.799	4.223	0.426	0.139	0.00004	0.901		0	3.799	0.065	0.000	0.900
0.870	1.687	4.089	0.412	0.148	0.00005	0.871	0.498	0.5	3.679	0.070	0.030	0.900

Standard Step

- Given a depth at one location, determine the depth at a second given location
- ➤ Step size (∆x) must be small enough so that changes in water depth aren't very large. Otherwise estimates of the friction slope and the velocity head are inaccurate
- Can solve in upstream or downstream direction
 - Usually solved upstream for subcritical
 - Usually solved downstream for supercritical
- > Find a depth that satisfies the energy equation

$$y_1 + \frac{V_1^2}{2g} + S_o \Delta x = y_2 + \frac{V_2^2}{2g} + S_f \Delta x$$

What curves are available? Steep Slope

Is there a curve between y_c and y_n that increases in depth in the downstream direction? <u>NO!</u>

Mild Slope

➤ If the slope is mild, the depth is less than the critical depth, and a hydraulic jump occurs, what happens next?

Rapidly varied flow!

When dy/dx is large then V isn't normal to cs

Hydraulic jump! Check conjugate depths

Water Surface Profiles: Putting It All Together

1 km downstream from gate there is a broad crested weir with P = 1 m. Draw the water surface profile.

Wave Celerity

Wave Celerity: Momentum Conservation

$$M_{1} = -\rho (V - V_{w})^{2} y \qquad M_{2} = r (V + dV - V_{w}) (V - V_{w}) y \qquad \text{Per unit width}$$

$$M_{1} + M_{2} = r y (V - V_{w}) [(V + dV - V_{w}) - (V - V_{w})]$$

$$M_{1} + M_{2} = r y (V - V_{w}) dV \qquad F_{p_{1}} + F_{p_{2}} = \frac{1}{2} r g (y^{2} - (y + dy)^{2})$$

$$Now \text{ equate pressure and momentum}$$

$$\frac{1}{2} f g (y^{2} - y^{2} - 2) dy - dy^{2}) = f (V - V_{w}) dV$$

$$-g\delta y = (V - V_w)\delta V$$

steady flow

 $V-V_w$ $V+\delta V-V_w$ $y+\delta y$

Wave Celerity

$$y(V - V_{w}) = (y + \delta y)(V + \delta V - V_{w})$$
Mass conservation

$$yV - yV_{w} = yV + \delta yV + y\delta V + \delta \phi V - yV_{w} - \delta yV_{w}$$

$$\delta V = -(V - V_{w})\frac{\delta y}{y}$$

$$- g\delta y = (V - V_{w})\delta V$$
Momentum
V-V_{w} V + \delta V - V_{w}
$$y + \delta y$$

$$g\delta y = (V - V_{w})^{2} \frac{\delta y}{y}$$
steady flow
$$gy = (V - V_{w})^{2} c = V - V_{w}$$

$$c = \sqrt{gy} \frac{V}{\sqrt{yg}} = Fr = \frac{V}{c}$$

Wave Propagation

Supercritical flow

- > c < V
- > waves only propagate downstream
- > water doesn't "know" what is happening downstream
- <u>upstream</u> control

Critical flow

≻ c=V

Subcritical flow

≻c>V

> waves propagate both upstream and downstream

Discharge Measurements

- Sharp-Crested Weir
- ≻V-Notch Weir

$$Q = \frac{2}{3}C_d b \sqrt{2g} H^{3/2}$$

$$Q = \frac{8}{15} C_d \sqrt{2g} \tan\left(\frac{\theta}{2}\right) H^{5/2}$$

$$Q = C_d b \sqrt{g} \left(\frac{2}{3}H\right)^{3/2}$$

Sluice Gate
$$Q = C_d b y_g \sqrt{2g y_1}$$

Explain the exponents of H!

 $V = \sqrt{2gH}$

Summary (1)

 \geq All the complications of pipe flow plus additional parameter... free surface location > Various descriptions of energy loss ≻Chezy, Manning, Darcy-Weisbach Importance of Froude Number 3 ∽ 2 ≻Fr>1 decrease in E gives increase in y Fr < 1 decrease in E gives decrease in y 2 Ε ≻Fr=1 standing waves (also min E given Q)

Summary (2)

> Methods of calculating location of free surface (Gradually varying) >Direct step (prismatic channel) Standard step (iterative) $\frac{dy}{dx} = \frac{S_o - S_f}{1 - Fr^2}$ ➢ Differential equation ► Rapidly varying ➢Hydraulic jump

Broad-crested Weir: Solution

$$q = \sqrt{gy_c^3}$$

$$q = \sqrt{(9.8m/s^2)(0.3m)}$$

$$q = 0.5144m^2/s$$

$$Q = qL = 1.54m^3/s$$

Summary/Overview

Energy losses
 Dimensional Analysis
 Empirical

$$V = \sqrt{\frac{8g}{f}} \sqrt{S_f R_h}$$
$$V = \frac{1}{-R_h^{2/3} S_o^{1/2}}$$
$$n$$

Energy Equation $y_1 + \frac{V_1^2}{2g} + S_o Dx = y_2 + \frac{V_2^2}{2g} + S_f Dx$

- Specific Energy $E = y + \frac{V^2}{2g} = y + \frac{q^2}{2gy^2} = y + \frac{Q^2}{2gA^2}$ Two depths with some arrows \succ Two depths with same energy!
 - ≻How do we know which depth is the right one?
 - \succ Is the path to the new depth possible?

What next?

► Water surface profiles ► Rapidly varied flow >A way to move from supercritical to subcritical flow (Hydraulic Jump) ► Gradually varied flow equations Surface profiles Direct step Standard step

Hydraulic Jump!

Open Channel Reflections

- Why isn't Froude number important for describing the relationship between channel slope, discharge, and depth for uniform flow?
- Under what conditions are the energy and hydraulic grade lines parallel in open channel flow?
- Give two examples of how the specific energy could increase in the direction of flow.